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Abstract

The shape of the transverse momentum distribution of W bosons (pWT )

produced in p�p collisions at
p
s = 1.8 TeV is measured with the D� detector

at Fermilab. The result is compared to QCD perturbative and resummation

calculations over the pWT range from 0� 200 GeV=c. The shape of the distri-

bution is consistent with the theoretical prediction.
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The transverse momentum (pWT ) of W intermediate vector bosons produced in proton-
antiproton collisions is due to the production of one or more gluons or quarks along with
the boson. At low transverse momentum (pWT < 10 GeV=c), multiple soft gluon emission
is expected to dominate the cross section. A soft gluon resummation technique [1-5] is
therefore used to make QCD predictions. At high transverse momentum (pWT > 20 GeV=c),
the cross section is dominated by the radiation of a single parton with large transverse
momentum. Perturbative QCD [6] is therefore expected to be reliable in this regime. A
prescription [4] has been proposed for matching the low and high pWT regions to provide
a continuous prediction for all pWT . Thus, a measurement of the transverse momentum
distribution may be used to check the soft gluon resummation calculations in the low pWT
range, and to test the perturbative QCD calculations at high pWT .

The transverse momentum spectrum of W bosons has been measured previously by the
UA1 [7], UA2 [8], and CDF [9] collaborations, but with smaller data samples than the
one used here. This paper presents a measurement of the shape of the pT spectrum of W
bosons produced in p�p collisions at

p
s = 1.8 TeV with the D� detector [10] at Fermilab,

and extends the pWT range of the previous measurements. The data come from a sample of
12:4 � 0:7 pb�1 collected during the 1992{1993 run. A measurement of the inclusive cross
section for W and Z boson production based on the same data set has been reported [11]
and agrees with QCD predictions.

This measurement uses the decay mode W ! e�. Electrons were detected in a hermetic
uranium/liquid-argon calorimeter with an energy resolution of about 15%=

p
E(GeV). The

calorimeter has a transverse granularity of ����� = 0:1�0:1, where � is the pseudorapidity
and � is the azimuthal angle. Electrons were accepted in the central pseudorapidity region
only, j�j < 1:1, to keep the background contamination from multijet events at a reasonably
low level for high values of pWT . The transverse momentum of the neutrino was calculated
using the calorimetric measurement of the missing transverse energy (6ET ) in the event. We
take the pWT to be the sum of the electron and neutrino transverse momenta, measuring it
only from the recoiling hadrons. The analysis used a single electron trigger, which required
one electron with transverse energy (ET ) greater than 20 GeV.

The o�ine electron identi�cation requirements consisted of four criteria: (i) the electron
had to deposit at least 95% of its energy in the electromagnetic calorimeter (21 radiation
lengths deep); (ii) the transverse and longitudinal shower shapes had to be consistent with
those expected for an electron [12]; (iii) a good match had to exist between a reconstructed
track in the drift chamber system and the shower position in the calorimeter; and (iv) the
electron had to be isolated from other energy deposits in the calorimeter, with I < 0:1. This
isolation variable is de�ned as I = [ETOT(0:4) � EEM(0:2)]=EEM(0:2), where ETOT(0:4) is
the total calorimeter energy inside a cone of radius

p
��2 +��2 = 0:4 and EEM(0:2) is the

electromagnetic energy inside a cone of radius 0.2. To select the W boson candidate sample,
we required one electron with ET > 25 GeV, and 6ET > 25 GeV. Events having a second
electron with ET > 20 GeV that satis�es criteria (i), (ii), and (iv) were excluded from the
candidate sample as possible Z ! e+e� events. Criterion (iii) was not applied to this second
electron in order to allow for possible tracking ine�ciencies. These selection criteria yielded
7132 W ! e� candidates.

The trigger and selection e�ciencies were determined using Z ! e+e� events in which
one of the electrons satis�ed the trigger and selection criteria. The second electron then
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provided an unbiased sample with which to measure the e�ciencies. No dependence of the
trigger or selection e�ciency on pWT was found, to an accuracy of 5%.

A Monte Carlo program [13] was used to simulate the D� detector response and calculate
the kinematic and geometric acceptance as a function of pWT . The detector resolutions used in
the Monte Carlo were determined from data, and were parametrized as a function of energy
and angle. The relative response of the hadronic and EM calorimeters was studied using the
transverse momentum of the Z boson as measured by the pT of the two electrons compared
to the hadronic recoil system in the Z event. This parametrized representation of the
D� detector was used to smear the theoretical prediction by detector e�ects and compare
it to our measured pWT . We prefer this method of comparison to a standard unfolding
procedure [14] that proved to be sensitive to the choice of the prior distribution function.
This sensitivity is caused by the Jacobian zero in dN=dpWT at the origin, which induces a
peak that appears near pWT � 4 GeV=c after it is broadened by our pWT resolution. Only
below 4 GeV=c do the true pWT distributions predicted by the two available models [4,5]
exhibit a di�erence, which is masked in the data by these same resolution e�ects.

The dominant source of background in theW boson sample was multijet events where one
or more of the jets uctuated to fake an electron. Some multijet events also have signi�cant
6ET due to uctuations and mismeasurements of the jet energies. This could fake a neutrino
from W boson decay. The amount of multijet background in the W ! e� candidate sample
was determined by �rst de�ning a \loose" event sample which had the same selection criteria
as the candidate sample except that electron identi�cation criteria (i) and (ii) were not
applied. This loose sample consisted of Ns signal events and Nb multijet background events.
The W ! e� candidate sample (described above) consisted of "sNs signal events and "bNb

multijet background events, where "s and "b are the electron selection e�ciencies for the
candidate relative to the loose samples, for signal and background respectively. We obtained
"s from the Z ! e+e� sample, and "b from events with 6ET < 15 GeV. The total multijet
background was determined to be (4:2� 2:3)%. The shape of the multijet background as a
function of pWT was determined by repeating the procedure in di�erent pWT bins.

To cross{check the multijet background estimate, the transverse mass and the 6ET dis-
tributions of the �nal data sample were compared to a model of the expected distributions
obtained from a combination of W ! e� Monte Carlo events plus the estimated multijet
background. The comparison was performed in three pWT bins: 0�30 GeV=c, 30�60 GeV=c,
and > 60 GeV=c; the number ofW ! e� candidates in each bin was 6726, 282, and 124. The
amount of multijet background in each pWT bin was estimated as (2:9�1:6)%, (20:9�11:7)%,
and (38:3�21:5)%, respectively. Figure 1 shows the results of the comparisons. The distinc-
tive shape of the transverse mass distribution for multijet background arises from applying
the kinematic cuts and the minimum pWT requirement to a sample predominantly composed
of dijet events that lie back{to{back in the transverse plane. The goodness of the �t be-
tween the data and the model is evaluated by performing a �2� test [15]. The numerical
results for �2�=d:o:f: for each �t in Fig. 1 are (a) 20:2=25, (b) 26:4=19, (c) 4:7=7, (d) 5:4=9,
(e) 3:0=13, and (f) 2:1=7. They correspond to �t probabilities of (a) 74%, (b) 12%, (c) 69%,
(d) 80%, (e) 99%, and (f) 95% respectively. We therefore conclude that the tests show good
agreement between the data and the expectation.

The normalized multijet background was subtracted bin by bin from the W boson candi-
date sample transverse momentum spectrum. Additional corrections (all less than 5%) were
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made to account for top quark background events and for Z ! e+e� events where one of the
electrons was lost or not identi�ed. Since pWT was measured from the recoiling hadrons, the
events originating from W ! �� (where � ! e��) contributed properly to the di�erential
distribution; this source of background therefore was included in the Monte Carlo simulation
of the pWT distribution.

The normalized distribution of the W boson transverse momentum ( 1
N

dN

dpW
T

) is shown in

Fig. 2 and given in Table I. The largest contributions to the systematic error in the pWT mea-
surement are the uncertainty in the magnitude of the multijet background, the uncertainty
in the hadronic recoil energy scale factor and resolution used in the detector simulation, and
the uncertainty in the selection e�ciency. These are all added in quadrature since they are
independent. We compare our experimental result to the theoretical prediction [4] computed
using the MRSA0 [16] parton distribution function and smeared for detector resolutions. The
measurement and the prediction are independently area{normalized to unity. These points
are used to perform a more detailed comparison between data and theory by plotting the
ratio (Data{Theory)/Theory, which is shown in Fig. 3. Data and theory di�er by less than
a half of a standard deviation above pWT of 60 GeV=c. We therefore conclude that the shape
of the distribution is consistent with the theoretical prediction.

In summary, we have measured the shape of the transverse momentum distribution of
W bosons produced in p�p collisions at

p
s = 1.8 TeV, and have found that it is consistent

with the combined QCD perturbative and resummation calculations.
We thank the sta�s at Fermilab and collaborating institutions for their contributions

to this work, and acknowledge support from the Department of Energy and National Sci-
ence Foundation (U.S.A.), Commissariat �a L'Energie Atomique (France), State Commit-
tee for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and
CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Col-
ciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and
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TABLE I. TheW boson transverse momentum distribution corresponding to Fig. 2. The column

labeled \Stat Error" shows the statistical uncertainty; \Syst Error" shows the systematic uncertainty

in background and e�ciency; \Detector Error" shows the systematic uncertainty in the detector

modelling; \Total Error" is the sum in quadrature of the previous three columns.

Bin Width hpWT i Nsignal (1=N)(dN=dpWT ) Stat Syst Detector Total

Error Error Error Error

(GeV/c) (GeV/c) (c/TeV) (c/TeV) (c/TeV) (c/TeV) (c/TeV)

2 1.2 506.8 37.4 1.6 1.9 6.1 6.6

2 3.0 1232.0 90.8 2.6 4.6 7.9 9.5

2 5.0 1253.0 92.4 2.6 4.8 4.4 7.0

2 7.0 1006.6 74.2 2.3 3.9 3.7 5.8

2 9.0 718.4 53.0 1.9 2.8 2.6 4.2

2 11.0 431.2 31.8 1.5 1.7 2.0 3.0

2 13.0 368.4 27.2 1.4 1.4 1.6 2.6

2 15.1 228.0 16.8 1.1 1.1 1.2 1.9

2 17.1 184.4 13.6 1.0 0.8 0.8 1.5

2 19.0 167.9 12.4 0.9 0.7 0.9 1.5

5 22.6 252.0 7.43 0.46 0.42 0.65 0.89

5 27.3 145.4 4.29 0.34 0.30 0.43 0.61

5 32.3 83.0 2.45 0.25 0.22 0.26 0.42

5 37.2 56.7 1.67 0.20 0.19 0.18 0.33

10 44.2 59.4 0.875 0.099 0.147 0.150 0.232

20 57.7 45.2 0.333 0.037 0.144 0.045 0.155

20 78.0 25.2 0.186 0.028 0.066 0.020 0.075

30 100.7 10.7 0.052 0.011 0.035 0.010 0.038

30 133.2 5.1 0.025 0.008 0.009 0.002 0.013

50 172.7 3.6 0.011 0.005 0.002 0.001 0.005
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FIG. 1. The transverse mass (left) and 6ET (right) distributions for three pWT bins. The points

are the D� data. The solid histogram is the sum of the Monte Carlo signal and the estimated

background. The dotted histogram is the estimated background alone.
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FIG. 2. The W boson transverse momentum spectrum, showing the D� result (solid points)

with statistical uncertainty. The theoretical calculation by Arnold and Kau�man [4], smeared for

detector resolutions, is shown as two lines corresponding to the �1� variations of the uncertainties

in the detector modelling. Within each bin, the values are plotted at the mean pWT . The fractional

systematic uncertainty on the data is shown as a band in the lower portion of the plot. The values

of the uncertainties for di�erent pWT bins are 100% correlated with each other. Upward uctuations

in the magnitude of the multijet background cause the widening observed in the band at about 60

and 100 GeV=c in pWT .
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FIG. 3. The ratio (Data{Theory)/Theory shown as a function of pWT with its statistical un-

certainty as error bars. Within each bin, the values are plotted at the mean pWT . The theory

corresponds to reference [4], smeared for detector resolutions. The systematic uncertainties from

data (background and e�ciency) and from the detector modelling are added in quadrature and

shown as a band.
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